

PRODUCT/PROCESS CHANGE NOTIFICATION

PCN IPG-IPC/14/8797 Dated 14 Nov 2014

ST7580 : METAL MASK CHANGE

Table 1. Change Implementation Schedule

Forecasted implementation date for change	07-Nov-2014
Forecasted availability date of samples for customer	30-Nov-2014
Forecasted date for STMicroelectronics change Qualification Plan results availability	07-Nov-2014
Estimated date of changed product first shipment	13-Feb-2015

Table 2. Change Identification

Product Identification (Product Family/Commercial Product)	ST7580 and ST7580TR
Type of change	Product design change
Reason for change	To improve yield and device stability
Description of the change	Metal Fix (from CA to CB version)
Change Product Identification	By a new Finished Goods code
Manufacturing Location(s)	

Table 3. List of Attachments

Customer Part numbers list	
Qualification Plan results	

Customer Acknowledgement of Receipt	PCN IPG-IPC/14/8797
Please sign and return to STMicroelectronics Sales Office	Dated 14 Nov 2014
Qualification Plan Denied	Name:
Qualification Plan Approved	Title:
	Company:
🗖 Change Denied	Date:
Change Approved	Signature:
Remark	

Name	Function	
Moscatelli, Alessandro	Marketing Manager	
Arrigo, Domenico Massimo	Product Manager	
Moretti, Paolo	Q.A. Manager	

DOCUMENT APPROVAL

WHAT:

We have upgraded product line UAC3CA from CA to CB revision. The impacted commercial products are: ST7580 and ST7580TR

WHY:

To improve the yield and the device stability.

HOW:

Through a metal mask modification.

WHEN:

The metal mask change has already been evaluated (see attached Reliability Report) and is effective immediately.

Samples will be available end of November.

Reliability Report

General Information				
Product Line	UAC3			
Product Description	Power Line Modem			
Product division	I&PC			
Package	VFQFPN48 7x7			
Silicon process technology BCD8 1v8				

Locations				
Wafer fab location	AGRATE R2			
Assembly plant location	CALAMBA - Phil			
Reliability assessment Pass				

DOCUMENT HISTORY

Version Date P		Pages	Author	Comment	
1.0	1.0 5-May-14		P. Coerezza	Original document	

Issued by

Paolo Coerezza

Reviewed by

Giuseppe Capodici

Approved by

Alceo Paratore

Table of Contents

1	AF	PPLI	CABLE AND REFERENCE DOCUMENTS	3
2	RE	ELIA	BILITY EVALUATION overview	4
	2.1	Ob	ectives	4
	22	Col	nclusion	4
3	De	<i>VICE</i>	e Characterístics	5
	3.1	Dev	vice description	.5
	3.1	.1	Generalities	5
	3.1	.2	Pin connection	6
	3.1	.3	Block diagram	7
	3.1	.4	Bonding diagram	8
	3.1	.5	Package outline/Mechanical data	9
	3.2 T	race	ability	10
⊿	Te	ete i	results summary	11
-	10	0.07		
	4.1	LO	Ts information	11
	4.2	Tes	st plan and results summary	12
5	Te	sts I	Description & detailed results	13
-			· · · ·	
	5.1	Die	oriented tests	13
	5.1	.1	High Temperature Operating Life	13
	5.1	.2	Early Life Failure Rate	13
	5.2	Pad	ckage oriented tests	14
	5.2	.1	Pre-Conditioning	14
	5.2	.2	High Temperature Storage	14
	5.2	.3	Thermal Cycles	14
	5.2	.4	Autoclave	14
	5.2	.5	Temperature Humidity Bias	14
	5.3	Ele	ctrical Characterization Tests	15
	5.3	.1	Latch-up	15
	5.3	.2	E.S.D.	15

1 APPLICABLE AND REFERENCE DOCUMENTS

Document reference	Short description
AEC-Q100 8161393	Stress test qualification for integrated circuitsGeneral Specification For Product Development

2 RELIABILITY EVALUATION OVERVIEW

2.1 Objectives

This report contains the reliability evaluation of UAC3 device diffused in AGRATE R2 and assembled in VFQFPN48 7x7 in CALAMBA.

According to Reliability Qualification Plan, below is the list of the trials performed:

Die Oriented Tests

- High Temperature Operating Life
- Temperature Humidity Bias
- Early Life Failure Rate

Package Oriented Tests

- Preconditioning
- Temperature Cycling
- Autoclave
- High Temperature Storage Life
- Temperature Humidity Bias

Electrical Characterization

- ESD resistance test
- LATCH-UP resistance test

2.2 Conclusion

Taking in account the results of the trials performed the UAC3 diffused in AGRATE R2 and assembled in VFQFPN48 7x7 in CALAMBA can be qualified from reliability viewpoint.

3 DEVICE CHARACTERISTICS

3.1 Device description

3.1.1 Generalities

The UAC3 is a flexible power line networking system-on-chip combining a high performing PHY processor core and a protocol controller with a fully integrated analog front end (AFE) and line driver for a scalable future-proof, cost effective, single chip, narrow-band power line communication solution.

3.1.2 Pin connection

	Pin	Name			
	1	TXD			
1	2	RXD			
1	3	VDDIO			
1	4	TRSTN			·
	5	TMS		Pin	Name
	6	GND	•		++
	7	тск	-	27	VDD_REG_1V8
1	8	TDO	-	28	VDDIO
1	9	TDI		29	NC
1	10	RESETN	-	30	NC
1	11	VDD		31	RESERVED0
1	12	XIN	-	32	NC
1				33	GND
	13	XOUT		34	VDDIO
				35	VSSA
	14	GND		36	CL_SEL
	15	VSSA		37	PL_RX_ON
	16	VDD_PLL		38	T_REQ
	17	VCCA		39	BR1
1				40	BR0
	18	ZC_IN		41	PL_TX_ON
1	19	RX_IN		42	RESERVED1
1	20	TX_OUT	-	43	RESERVED2
1			-	44	RESERVED3
	21	PA_IN+		45	GND
1	22	PA IN.		46	VDD
		17010-		47	RESERVED4
	23	CL		48	RESERVED5
	24	VCC			
	25	VSS		-	Exposed pad
	26	PA_OUT			

3.1.3 Block diagram

3.1.4 Bonding diagram

3.1.5 Package outline/Mechanical data

Dim	(mm)			
Din.	Min.	Тур.	Max.	
A	0.80	0.90	1.00	
A1		0.02	0.05	
A2		0.65	1.00	
A3		0.25		
b	0.18	0.23	0.30	
D	6.85	7.00	7.15	
D2	4.95	5.10	5.25	
E	6.85	7.00	7.15	
E2	4.95	5.10	5.25	
e	0.45	0.50	0.55	
L	0.30	0.40	0.50	
ddd		0.08		

3.2 Traceability

Wafer fab information		
Wafer fab manufacturing location	AGRATE R2	
Wafer diameter	8 inches	
Wafer thickness	280 μm	
Silicon process technology	BCD8 1v8	
Die finishing back side	Cr/NiV/Au	
Die size	3539 x 3339 μm	
Bond pad metallization layers	AICu	
Passivation	Polymide	
Metal levels	4	

Assembly Information		
Assembly plant location	CALAMBA	
Package description	VFQFPN48 7x7	
Molding compound	CEL9220HF13	
Wires bonding materials/diameters	Au	
Die attach material	Ablestik QMI 519	
Lead solder material	NiPdAu	

4 TESTS RESULTS SUMMARY

4.1 LOTs information

Lot ID #	Silicon Rev.	Package	Assy Plant	Diff. Plant	Comments
UAC3	CBA	VFQFPN48 7x7	CALAMBA – Phil	AGRATE R2	
UAC3	CAA	TQFP64 10x10	MUAR - Malaysia	AGRATE R2	
UAB3	ABA	VFQFPN48 7x7	MUAR - Malaysia	AGRATE R2	

4.2 Test plan and results summary

Die Oriented Tests							
Test	Method	Conditions		ailure/S	SS	Duration	Note
			UAC3 CBA	UAC3 CAA	UAB3 ABA		
HTOL	High Temperature Op	perating Life					
		Tj=150°C	0/77	-	0/40	(1) 500h	
	PC before	Vcc=18V, DVdd=5.5V, <i>lout</i> =1A rms,	(1)		(2)	(2) 1000h	
		3A Peak					
		BIST+SCAN+Functionals tests					
ELFR	Early Life Failure Rate						
		Tj=150°C	-	-	0/2400	24H	(3) BAA rov
		Vcc=18V, DVdd=5.5V, <i>lout</i> =1A rms,			(3)		DAA IEV.
		3A Peak					
		BIST+SCAN+Functional tests					

Package	Oriented Test	S					
Test	Method	Conditions		Failure/SS			
			UAC3	UAC3	UAB3	Durati	Note
			CBA	CAA	ABA	on	
PC	Pre-Conditionin	g: Moisture sensitivity level 3					
		192h 30°C/60% - 3 reflow PBT 260°C	0/77	0/154	0/100	-	
THB	Temperature Hu	umidity Bias					
	PC before	Ta=85°C/85%RH	-	-	0/40	1000h	
		Vcc=20V, Vdd=2V, DVdd=5.5V					
AC	Autoclave						
	PC before	121°C 2atm	-	0/77	0/40 + 0/77 (3)	168h	(3) BAA rev
тс	Temperature Cycling						
_	PC before	Temp. range:	-		-		
		1000 cycles @ -50/+150 °C		0/77			
		500 cycles @ -65/+150 °C		-	0/40 +		(3)
					0/77(3)		BAA rev.
HTSL	High Temperatu	ire Storage					
	No bias	Tamb=150°C	-	0/77	0/40	1000h	

Electrical Characterization Tests							
Test	Method	Conditions	Failure/SS				
			UAC3	UAC3	UAB3	Duration	Note
			CBA	CAA	ABA		
ESD	Electro Static Discharge						
	Human Body Model	+/- 2kV	-	-	0/3		
	Machine Model	+/- 200V	-	-	0/3		
	Charge Device	+/- 500V; +/- 750V on corner pins	-	0/3	-		
	Model	+/- 1.5kV	-	-	0/3		
LU	Latch-Up						
	Over-voltage and Current Injection	Tamb=85°C Jedec78 – Level B	-	-	0/3	-	

Note:

The UAC3 device is a metal option of the UAB3 device and all positive reliability results obtained on UAB3 can be extended by similarity to the UAC3 device.

5 TESTS DESCRIPTION & DETAILED RESULTS

5.1 Die oriented tests

5.1.1 High Temperature Operating Life

This test is performed like application conditions in order to check electromigration phenomena, gate oxide weakness and other design/manufacturing defects put in evidence by internal power dissipation.

The flow chart is the following:

- Initial testing @ Ta=25°C
- Check at 168 and 500hrs @ Ta=25°C
- Final Testing (1000hrs) @ Ta=25°C

5.1.2 Early Life Failure Rate

This test is to evaluate the defects inducing failure in early life. The device is stressed in biased conditions at the max junction temperature.

The flow chart is the following:

- Initial testing @ Ta=25°C,
- Final Testing (24 hr.) @ Ta=25°C

5.2 Package oriented tests

5.2.1 Pre-Conditioning

The device is submitted to a typical temperature profile used for surface mounting, after a controlled moisture absorption.

The scope is to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "popcorn" effect and delamination.

5.2.2 High Temperature Storage

The device is stored in unbiased condition at the max. temperature allowed by the package materials, sometimes higher than the max. operative temperature.

The scope is to investigate the failure mechanisms activated by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding.

5.2.3 Thermal Cycles

The purpose of this test is to evaluate the thermo mechanical behavior under moderate thermal gradient stress. Test flow chart is the following:

- Initial testing @ Ta=25°C
- Readout @ 500 cycles
- Final Testing @ 1000 cycles @ Ta=25°C

TEST CONDITIONS:

- Ta= -50°C to +150°C(air)
- 15 min. at temperature extremes
- 1 min. transfer time

5.2.4 Autoclave

The purpose of this test is to point out critical water entry path with consequent corrosion phenomena related to chemical contamination and package hermeticity.

Test flow chart is the following:

- Initial testing @ Ta=25°C
- Final Testing (168hrs) @ Ta=25°C

TEST CONDITIONS:

- P=2.08 atm
- Ta=121°C
- test time= 168hrs

5.2.5 Temperature Humidity Bias

The test is addressed to put in evidence problems of the die-package compatibility related to phenomena activated in wet conditions such as electro-chemical corrosion.

The device is stressed in static configuration approaching some field status like power down. Temperature, Humidity and Bias are applied to the device in the following environmental conditions => Ta=85°C / RH=85%. Input pins to Low / High Voltage (alternate) to maximize voltage contrast. Test Duration 1000 h.

The flow chart is the following:

- Initial testing @ Ta=25°C
- Check @ 168 and 500hrs
- Final Testing (1000hrs) @ Ta=25°C

5.3 Electrical Characterization Tests

5.3.1 Latch-up

This test is intended to verify the presence of bulk parasitic effects inducing latch-up.

The device is submitted to a direct current forced/sinked into the input/output pins. Removing the direct current no change in the supply current must be observed.

Stress applied:

condition	NEG. INJECTION	POS. INJECTION	OVERVOLTAGE
IN low: OV	-100mA	Inom+100mA	Vdd,Vdd_pll,Vdd_reg1v8=3V DVdd,Vcca,DVdd_flash=7.5V Vdd_12=18V Vcc=27V
IN high: 9.9V	-100mA	Inom+100mA	Vdd,Vdd_pll,Vdd_reg1v8=3V DVdd,Vcca,DVdd_flash=7.5V Vdd_12=18V Vcc=27V

Setup Configuration:

Pin RESETN tied LOW and tested only during LOW conditions

5.3.2 E.S.D.

This test is performed to verify adequate pin protection to electrostatic discharges. The flow chart is the following:

- Initial testing @ Ta=25°C
- ESD discharging @ Ta=25°C
- Final Testing @ Ta=25°C

TEST CONDITIONS:

0	Human Body Model	ANSI/ESDA/JEDEC STANDARD JES001
	-	CDF-AEC-Q100-002

- Machine Model
 JEDEC STANDARD EIA/JESD-A115
 CDF-AEC-Q100-003
- Charge Device Model ANSI/ESD STM 5.3.1 ESDA JEDEC JESD22-C101 CDF-AEC-Q100-011

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:

THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2014 STMicroelectronics - All rights reserved.

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com