NLAS4685

Ultra-Low Resistance Dual SPDT Analog Switch

The NLAS4685 is an advanced CMOS analog switch fabricated in Sub-micron silicon gate CMOS technology. The device is a dual Independent Single Pole Double Throw (SPDT) switch featuring Ultra-Low R_{ON} of 0.8Ω, for the Normally Closed (NC) switch and for the Normally Opened switch (NO) at 2.7 V .

The part also features guaranteed Break Before Make switching, assuring the switches never short the driver.

The NLAS 4685 is available in a $2.0 \times 1.5 \mathrm{~mm}$ bumped die array, with a 3×4 arrangement of solder bumps. The pitch of the solder bumps is 0.5 mm for easy handling.

Features

- Ultra-Low $\mathrm{R}_{\mathrm{ON}},<0.8 \Omega$ at 2.7 V
- Threshold Adjusted to Function with 1.8 V Control at $\mathrm{V}_{\mathrm{CC}}=2.7-3.3 \mathrm{~V}$
- Single Supply Operation from 1.8-5.5 V
- Tiny $2 \times 1.5 \mathrm{~mm}$ Bumped Die
- Low Crosstalk, $<81 \mathrm{~dB}$ at 100 kHz
- Full $0-\mathrm{V}_{\mathrm{CC}}$ Signal Handling Capability
- High Isolation, -65 dB at 100 kHz
- Low Standby Current, < 50 nA
- Low Distortion, < 0.14\% THD
- R_{ON} Flatness of 0.15Ω
- Pin for Pin Replacement for MAX4685
- $\mathrm{Pb}-$ Free Package is Available

Applications

- Cell Phone
- Speaker Switching
- Power Switching (Up to 100 mA)
- Modems
- Automotive

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

PIN CONNECTIONS AND LOGIC DIAGRAM

FUNCTION TABLE

IN 1, $\mathbf{2}$	NO 1, $\mathbf{2}$	NC 1, $\mathbf{2}$
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NLAS4685FCT1	Microbump	3000 Tape/Reel
NLAS4685FCT1G	Microbump (Pb-Free)	3000 Tape/Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

NLAS4685

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage $\left(\mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}\right.$, or $\left.\mathrm{V}_{\mathrm{COM}}\right)($ (Note 1)	$-0.5 \leq \mathrm{V}_{\mathrm{IS}} \leq \mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	$-0.5 \leq \mathrm{V}_{\mathrm{I}} \leq+7.0$	V
I_{IK}	DC Current, Into or Out of Any Pin	± 50	mA

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. Signal voltage on NC, NO, and COM exceeding VCC or GND are clamped by the internal diodes. Limit forward diode current to maximum current rating.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage	1.8	5.5	V
$\mathrm{~V}_{\mathrm{IN}}$	Digital Select Input Voltage	GND	5.5	V
$\mathrm{~V}_{\mathrm{IS}}$	Analog Input Voltage (NC, NO, COM)	GND	V_{CC}	V
T_{A}	Operating Temperature Range	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise or Fall Time, SELECT		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$	0
		$\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$	0	100

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}} \pm 10 \%$	Guaranteed Limit			Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$	$<85^{\circ} \mathrm{C}$	$<125^{\circ} \mathrm{C}$	
V_{IH}	Minimum High-Level Input Voltage, Select Inputs		2.0	1.4	1.4	1.4	V
			2.5	1.4	1.4	1.4	
			3.0	1.4	1.4	1.4	
			5.0	2.0	2.0	2.0	
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage, Select Inputs		2.0	0.5	0.5	0.5	V
			2.5	0.5	0.5	0.5	
			3.0	0.5	0.5	0.5	
			5.0	0.8	0.8	0.8	
I_{IN}	Maximum Input Leakage Current, Select Inputs	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	5.5	± 1.0	± 1.0	± 1.0	$\mu \mathrm{A}$
IOFF	Power Off Leakage Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$ or GND	0	± 10	± 10	± 10	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	Select and $\mathrm{V}_{\text {IS }}=\mathrm{V}_{\mathrm{CC}}$ or GND	5.5	± 180	± 200	± 200	nA

DC ELECTRICAL CHARACTERISTICS - Analog Section

Symbol	Parameter	Condition	$\mathrm{V}_{\mathrm{cc}} \pm 10 \%$	Guaranteed Maximum Limit						Unit
				$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$		$<85^{\circ} \mathrm{C}$		$<125^{\circ} \mathrm{C}$		
				Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{R}_{\mathrm{ON}} \\ & \text { (NC, NO) } \end{aligned}$	"ON" Resistance (Note 2)	$\begin{aligned} & \mathrm{V}_{I N} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IS}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{IN}} \leq 100 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & 2.0 \\ & 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 1.0 \\ & 0.9 \end{aligned}$	Ω
RFLAT (NC, NO)	On-Resistance Flatness (Notes 2, 4)	$\begin{aligned} & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$		$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.35 \end{aligned}$	Ω
$\Delta \mathrm{R}_{\text {ON }}$	On-Resistance Match Between Channels (Notes 2 and 3)	$\begin{aligned} & \mathrm{V}_{\text {IS }}=1.3 \mathrm{~V} ; \\ & \mathrm{I}_{\text {COM }}=100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=1.5 \mathrm{~V} ; \\ & \text { I COM }^{2} 100 \mathrm{~mA} \\ & \mathrm{~V}_{\text {IS }}=2.8 \mathrm{~V} ; \\ & \text { ICOM }^{\text {C }} 000 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 0.18 \\ & 0.06 \\ & 0.06 \end{aligned}$		$\begin{aligned} & \hline 0.18 \\ & 0.06 \\ & 0.06 \end{aligned}$		$\begin{aligned} & 0.18 \\ & 0.06 \\ & 0.06 \end{aligned}$	Ω
$\mathrm{I}_{\text {NC(OFF) }}$ ${ }^{\mathrm{NO} O(O F F)}$	NC or NO Off Leakage Current (Figure 10)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{NO}} \text { or } \mathrm{V}_{\mathrm{NC}}=1.0 \\ & \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} \end{aligned}$	5.5	-1	1	-10	10	-150	150	nA
$\mathrm{I}_{\text {COM (ON) }}$	COM ON Leakage Current (Figure 10)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}$ $\mathrm{V}_{\mathrm{NO}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NC} floating or $\mathrm{V}_{\mathrm{NC}} 1.0 \mathrm{~V}$ or 4.5 V with V_{NO} floating $\mathrm{V}_{\mathrm{COM}}=1.0 \mathrm{~V}$ or 4.5 V	5.5	-1	1	-10	10	-150	150	nA

2. Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
3. $\Delta R_{O N}=R_{O N(M A X)}-R_{O N(M I N)}$ between all switches.
4. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

AC ELECTRICAL CHARACTERISTICS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}$)

Symbol	Parameter	Test Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & V_{\text {IS }} \\ & \text { (V) } \end{aligned}$	Guaranteed Maximum Limit							Unit
					$-55^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$			$<85^{\circ} \mathrm{C}$		$<125^{\circ} \mathrm{C}$		
					Min	Typ*	Max	Min	Max	Min	Max	
ton	Turn-On Time	$R_{L}=50 \Omega, C_{L}=35 \mathrm{pF}$ (Figures 2 and 3)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 2.8 \end{aligned}$			55 50 30		65 60 35		70 60 35	ns
toff	Turn-Off Time	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ (Figures 2 and 3)	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.5 \\ & 2.8 \end{aligned}$			55 50 25		65 60 30		$\begin{aligned} & 70 \\ & 60 \\ & 30 \end{aligned}$	ns
$\mathrm{t}_{\text {BBM }}$	Minimum Break-Before-Make Time	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=3.0 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \text { (Figure 1) } \end{aligned}$	3.0	1.5	2	15						ns

		Typical @ 25, $\mathbf{V}_{\text {CC }}=\mathbf{5 . 0} \mathbf{V}$	$\mathbf{V}_{\text {CC }}=\mathbf{3 . 0} \mathbf{V}$	
$\mathrm{C}_{\text {NC }}$ Off	NC Off Capacitance, $\mathrm{f}=1 \mathrm{MHz}$		208	
$\mathrm{C}_{\text {NO }}$ Off	NO Off Capacitance, $\mathrm{f}=1 \mathrm{MHz}$		102	
$\mathrm{C}_{\text {NC }}$ On	NC On Capacitance, $\mathrm{f}=1 \mathrm{MHz}$		547	pF
$\mathrm{C}_{\text {NO }}$ On	NO On Capacitance, $\mathrm{f}=1 \mathrm{MHz}$		431	

${ }^{*}$ Typical Characteristics are at $25^{\circ} \mathrm{C}$.

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted) (Note 6)

Symbol	Parameter	Condition	$\stackrel{\mathrm{v}_{\mathrm{cc}}}{\mathrm{~V}}$	Typical	Unit
				$25^{\circ} \mathrm{C}$	
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm}$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 4)	3.0	11.5	MHz
$\mathrm{V}_{\text {ONL }}$	Maximum Feed-through On Loss	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{dBm} @ 100 \mathrm{kHz}$ to 50 MHz $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 4)	3.0	-0.05	dB
VISO	Off-Channel Isolation	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS} ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{nF} \\ & \mathrm{~V}_{\mathrm{IN}} \text { centered between } \mathrm{V}_{\mathrm{CC}} \text { and } \operatorname{GND} \text { (Figure 4) } \end{aligned}$	3.0	-65	dB
Q	Charge Injection Select Input to Common I/O	$\begin{aligned} & V_{I N}=V_{C C \text { to }} G N D, R_{I S}=0 \Omega, C_{L}=1 \mathrm{nF} \\ & Q=C_{L}-\Delta V_{\text {OUT }} \text { (Figure 5) } \end{aligned}$	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	pC
THD	Total Harmonic Distortion THD + Noise	$\begin{aligned} & \mathrm{F}_{\text {IS }}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\text {gen }}=600 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\text {IS }}=1 \mathrm{VMS} \end{aligned}$	3.0	0.14	\%
VCT	Channel-to-Channel Crosstalk	$\mathrm{f}=100 \mathrm{kHz} ; \mathrm{V}_{\mathrm{IS}}=1 \mathrm{VRMS}, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ $\mathrm{V}_{\text {IN }}$ centered between V_{CC} and GND (Figure 4)	3.0	-81	dB

5. Off-Channel Isolation $=20 \log 10(\mathrm{Vcom} / \mathrm{Vno}), \mathrm{Vcom}=$ output, $\mathrm{Vno}=$ input to off switch.
6. $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.

Figure 1. $\mathrm{t}_{\mathrm{BBM}}$ (Time Break-Before-Make)

Figure 2. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Figure 3. $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $\mathrm{V}_{\text {ISO }}$, Bandwidth and $\mathrm{V}_{\text {ONL }}$ are independent of the input signal direction.
$\mathrm{V}_{\text {ISO }}=$ Off Channel Isolation $=20 \log \left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right)$ for $\mathrm{V}_{\text {IN }}$ at 100 kHz
$\mathrm{V}_{\text {ONL }}=$ On Channel Loss $=20 \log \left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{V}_{\mathrm{IN}}}\right)$ for V_{IN} at 100 kHz to 50 MHz
Bandwidth $(\mathrm{BW})=$ the frequency 3 dB below $\mathrm{V}_{\mathrm{ONL}}$
$\mathrm{V}_{\mathrm{CT}}=$ Use $\mathrm{V}_{\text {ISO }}$ setup and test to all other switch analog input/outputs terminated with 50Ω

Figure 4. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V ${ }_{\text {ONL }}$

Figure 5. Charge Injection: (Q)

Figure 6. Total Harmonic Distortion Plus Noise versus Frequency

Figure 7. Voltage in Threshold on Logic Pins

Figure 9. T-on/T-off Time versus Temperature

Figure 8. Charge Injection versus $\mathrm{V}_{\text {is }}$

Figure 10. NO/NC Current Leakage Off and On,

$$
\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V}
$$

Figure 11. I Ic Current Leakage versus Temperature $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$

Figure 12. NC/NO On-Resistance versus COM Voltage

Figure 13. NC/NO On-Resistance versus COM Voltage

Figure 14. NC/NO Bandwidth and Phase Shift versus Frequency

Figure 15. NC/NO Off Isolation and Crosstalk

Figure 16. T-on/T-off versus V_{CC}

Figure 17. NC/NO On-Resistance versus COM Voltage

Figure 18. NC/NO On-Resistance versus COM Voltage

10 PIN FLIP-CHIP

CASE 489AA-01
ISSUE A
DATE 04 MAY 2004

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLING DIMENSION: MILLIMETERS.
3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

	MILLIMETERS	
DIM	MIN	MAX
A	---	0.650
A1	0.210	0.270
A2	0.280	0.380
D	1.965 BSC	
E	1.465 BSC	
b	0.250	0.350
e	0.500 BSC	
D1	1.500 BSC	
E1	1.000 BSC	

GENERIC
MARKING DIAGRAM*

xxxx = Specific Device Code
YY = Year
WW = Work Week
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present.

| DOCUMENT NUMBER: | 98AON12946D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | 10 PIN FLIP-CHIP | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

